
Gnu	Awk	-	Part	14	(HPR	Show	2816)
Redirection	of	input	and	output	-	part	1

Dave	Morriss

Gnu	Awk	-	Part	14	(HPR	Show	2816)
Introduction

This	 is	 the	 fourteenth	 episode	 of	 the	 “Learning	 Awk”	 series	 which	 is	 being
produced	by	b-yeezi	and	myself.

In	 this	 episode	 and	 the	 next	 I	want	 to	 start	 looking	 at	 redirection	 within	Awk
programs.	I	had	originally	intended	to	cover	the	subject	in	one	episode,	but	there
is	just	too	much.

So,	in	the	first	episode	I	will	be	starting	with	output	redirection	and	then	in	the
next	 episode	will	 spend	 some	 time	 looking	 at	 the	getline	 command	 used	 for
explicit	input,	often	with	redirection.

Redirection	of	output

So	far	we	have	seen	that	when	an	awk	script	uses	print	or	printf	 the	output	is
written	to	the	standard	output	(the	screen	in	most	cases).	The	redirection	feature
in	awk	allows	output	to	be	written	elsewhere.

How	this	is	achieved	is	described	in	the	following	sections.

Redirecting	to	a	file

print	items	>	output-file

printf	format,	items	>	output-file

Here,	'items'	denotes	the	items	to	be	printed,	'format'	is	the	format	expression
for	'printf',	'output-file'	is	an	expression	which	is	converted	to	a	string	and
contains	the	name	of	the	output	file.

Here’s	 a	 simple	 example.	 It	 uses	 the	 file	 of	 fruit	 data	 introduced	 in	 episode
number	2.	This	data	file	is	included	with	this	show	(awk14_fruit_data.txt):

$	awk	'NR	>	1	{print	$1	>	"fruit_names"}'	awk14_fruit_data.txt

$	cat	fruit_names

http://hackerpublicradio.org/series.php?id=94
http://hackerpublicradio.org/correspondents.php?hostid=300
https://www.gnu.org/software/gawk/manual/gawk.html#Redirection
http://hackerpublicradio.org/eps/hpr2816/awk14_fruit_data.txt

apple

banana

strawberry

grape

apple

plum

kiwi

potato

pineapple

Here	 the	 script	 skips	 the	 first	 line	of	headers,	 then	prints	out	 the	 fruit	name	 in
field	 1	 to	 the	 file	 called	 'fruit_names'.	 Notice	 the	 file	 name	 is	 enclosed	 in
quotes	because	it	is	a	string.

The	script	will	loop	once	per	line	of	the	input	file	executing	the	redirection	each
time.	However	the	file	contains	all	of	the	names	in	the	same	order	as	the	input
file.	This	is	because	of	the	following	behaviour:

The	output	file	is	erased	before	the	first	output	is	written	to	it.
Subsequent	writes	to	the	same	file	do	not	erase	it	but	append	to	it.

It	is	important	to	be	aware	that	redirection	in	Awk	is	similar	to	but	not	the	same
as	that	in	shell	scripts.

What	 we	 have	 done	 here	 is	 not	 really	 different	 from	 running	 the	 following
command	where	the	shell	deals	with	redirection:

$	awk	'NR	>	1	{print	$1}'	awk14_fruit_data.txt	>	fruit_names

Here	Awk	is	writing	to	the	standard	output	stream	and	the	shell	is	capturing	this
stream	 and	 redirecting	 it	 to	 a	 file.	 However,	 things	 get	 more	 complex	 if	 the
requirement	is	to	write	to	more	than	one	file	from	a	script.

The	 following	 downloadable	 script	 (awk14_ex1.awk)	writes	 to	 a	 collection	 of
output	files:

$	cat	awk14_ex1.awk

#!/usr/bin/awk	-f

#	Downloadable	example	1	for	GNU	Awk	Part	14

NR	>	1	{

				colour	=	$2

				fname	=	"awk14_"	colour	"_fruit"

http://hackerpublicradio.org/eps/hpr2816/awk14_ex1.awk

				printf	"Writing	%s	to	%s\n",$1,fname

				print	$1	>	fname

}

Running	the	script	writes	to	files	called	'awk14_brown_fruit'	and	similar	in	the
current	directory:

$./awk14_ex1.awk	awk14_fruit_data.txt

Writing	apple	to	awk14_red_fruit

Writing	banana	to	awk14_yellow_fruit

Writing	strawberry	to	awk14_red_fruit

Writing	grape	to	awk14_purple_fruit

Writing	apple	to	awk14_green_fruit

Writing	plum	to	awk14_purple_fruit

Writing	kiwi	to	awk14_brown_fruit

Writing	potato	to	awk14_brown_fruit

Writing	pineapple	to	awk14_yellow_fruit

The	script	announces	what	 it’s	doing,	which	 is	a	 little	superfluous	but	helps	 to
visualise	what’s	going	on.

Notice	that	since	the	output	file	names	are	generated	dynamically	and	are	liable
to	change	between	each	line	read	from	the	input	file	the	script	is	doing	what	was
described	 earlier	 –	 creating	 them	 (or	 emptying	 them	 if	 they	 already	 exist)	 and
then	appending	to	them	once	open.	All	the	files	are	closed	when	the	script	exits
of	course.

The	files	created	are	shown	below	and	the	contents	of	one	displayed:

$	ls	awk14_*_fruit

awk14_brown_fruit		awk14_green_fruit		awk14_purple_fruit		

awk14_red_fruit		awk14_yellow_fruit

$	cat	awk14_purple_fruit

grape

plum

Redirecting	and	appending	to	an	existing	file

The	next	type	of	redirection	uses	two	greater	than	signs:

print	items	>>	output-file

printf	format,	items	>>	output-file

In	this	case	the	output	file	is	expected	to	exist	already.	If	it	does	then	its	contents
are	not	erased	but	are	appended	to.	If	the	file	does	not	exist	then	it	is	created	and
written	to	as	before.

When	 redirecting	 to	 a	 file	 in	 a	 shell	 script	 it’s	 common	 to	 see	 something	 like
this:

echo	"Script	starting"	>	script.log

...

echo	"Script	ending"	>>	script.log

The	use	of	'>>'	in	the	second	case	is	necessary	because	otherwise	the	file	would
have	been	cleared	out	before	the	message	was	written.	Each	redirection	like	this
in	Bash	involves	opening	and	closing	the	output	file.

In	an	awk	script	on	the	other	hand	–	as	we	have	seen	–	the	file	is	kept	open	by	the
script	until	it	is	closed	on	exit.	There	is	a	'close'	command	which	will	do	this
explicitly,	and	we	will	look	at	this	shortly.

Redirecting	to	another	program

This	type	of	redirection	uses	a	pipe	symbol	to	send	output	to	a	string	containing
a	command	(or	commands)	for	the	shell.

print	items	|	command

printf	format,	items	|	command

The	 following	 example	 shows	 the	 fruit	 names	 being	 written	 to	 a	 pair	 of
commands	in	a	shell	pipeline:

$	awk	'NR	>	1	{print	$1	|	"sort	-u	|	nl"}'	awk14_fruit_data.txt

					1		apple

					2		banana

					3		grape

					4		kiwi

					5		pineapple

					6		plum

					7		potato

					8		strawberry

The	names	are	sorted	using	the	'sort'	command,	requesting	that	the	results	be
made	 unique	 ('-u').	 The	 output	 from	 the	 sort	 is	 run	 through	 'nl'	 which
numbers	the	lines.

As	the	awk	script	is	run,	a	sub-process	is	executed	with	the	two	commands.	The
first	 name	 is	 then	 sent	 to	 this	 process,	 and	 this	 repeats	 with	 each	 successive
name.	The	sub-process	finishes	when	the	script	finishes.

In	this	case	the	'sort'	command	will	have	accumulated	all	the	names,	then	on
the	connection	being	terminated	it	will	perform	the	sort	and	pass	the	results	to	
'nl'.

There	 is	 a	 'close'	 command	 in	 awk	 which	 will	 close	 the	 redirection	 to	 the
command(s)	 or	 to	 a	 file.	 The	 argument	 to	 'close'	 needs	 to	 be	 the	 exact
command(s)	which	define	 the	process	 (or	 the	exact	 file	name).	For	 this	 reason
it’s	a	good	idea	to	store	the	commands	or	file	name	in	an	awk	variable.

The	following	downloadable	script	(awk14_ex2.awk)	shows	the	variable	'cmd'
being	used	to	hold	the	shell	commands.	The	connection	is	closed	to	show	how	it
would	be	done,	though	there	is	no	actual	need	to	do	so	here.

$	cat	awk14_ex2.awk

#!/usr/bin/awk	-f

#	Downloadable	example	2	for	GNU	Awk	Part	14

BEGIN	{

				cmd	=	"sort	-u	|	nl"

}

NR	>	1	{

				print	$1	|	cmd

}

END	{

				close(cmd)

}

Running	the	script	gives	the	same	result	as	before:

$./awk14_ex2.awk	awk14_fruit_data.txt

					1		apple

					2		banana

					3		grape

					4		kiwi

					5		pineapple

					6		plum

					7		potato

					8		strawberry

http://hackerpublicradio.org/eps/hpr2816/awk14_ex2.awk

Here’s	 a	more	 real	 world	 example	 (at	 least	 it’s	 real	 in	my	world).	When	 I’m
preparing	an	HPR	show	like	this	which	involves	a	number	of	example	scripts	I
need	 to	 run	 them	for	 testing	purposes.	 I	have	a	main	directory	 for	HPR	shows
and	a	 sub-directory	per	 show.	 I	 like	 to	make	 soft	 links	 to	 the	examples	 in	 this
sub-directory	so	I	can	run	tests	without	hopping	about	between	directories.

In	general	I	make	links	in	this	way:

ln	-s	-f	PathToExample	BasenameOfExample

I	wrote	an	Awk	script	to	help	me	which	takes	path	names	as	input	and	constructs
shell	commands	which	it	pipes	into	'sh'.

The	following	downloadable	script	(awk14_ex3.awk)	shows	the	process.

$	cat	awk14_ex3.awk

#!/usr/bin/awk	-f

#	Downloadable	example	3	for	GNU	Awk	Part	14

{

				#	Split	the	path	up	into	components

				n	=	split($0,a,"/")

				if	(n	<	2)	{

								print	"Error	in	path",$0	>	"/dev/stderr"

								next

				}

				#	Build	the	shell	command	so	we	can	show	it

				cmd	=	sprintf("[-e	%s]	&&	ln	-s	-f	%s	%s",$0,$0,a[n])

				print	">>	"	cmd

				#	Feed	the	command	to	the	shell

				printf("%s\n",cmd)	|	"sh"

}

END	{

				close("sh")

}

The	script	expects	to	be	given	one	or	more	pathnames	on	standard	input.	It	first
takes	the	path	and	splits	it	up	based	on	the	'/'	character.	Since	'split'	returns
the	number	of	elements	then	that	number	will	index	the	last	element.	We	check
that	it’s	sensible	before	proceeding.	Note	that	the	error	message	generated	by	the
'if'	test	is	redirected	to	'/dev/stderr'.	We’ll	be	looking	at	this	shortly.

http://hackerpublicradio.org/eps/hpr2816/awk14_ex3.awk

We	use	'sprintf'	 to	make	 the	shell	command.	 It	 first	adds	a	 test	 that	 the	 file
path	 leads	 to	 a	 file,	 then	 if	 so	 the	 shell	 command	 uses	 the	 'ln'	 command	 to
make	a	soft	 link.	We	use	 the	'-f'	option	which	 forces	 the	creation	 to	proceed
even	 if	 the	 link	 already	 exists.	 The	 first	 argument	 to	'ln'	 is	 the	 path	 and	 the
second	the	basename	(last	component)	of	the	file	path.

This	 command	 is	 printed	 for	 reference,	 then	 it	 is	 executed	 by	 printing	 to	 a
process	running	'sh'	(which	will	be	the	Bourne	shell	or	similar	by	default).

Running	the	script	can	be	achieved	thus.	We	use	'printf'	as	a	simple	way	of
adding	a	newline	to	each	pathname.	The	paths	come	from	a	filename	expansion
which	includes	a	question	mark.	Running	it	gives	the	following	results:

$	printf	"%s\n"	Gnu_Awk__Part_14/hpr2816/awk14_ex?.awk	|	./awk14_ex3.awk

>>	[-e	Gnu_Awk__Part_14/hpr2816/awk14_ex1.awk]	&&	ln	-s	-f	

Gnu_Awk__Part_14/hpr2816/awk14_ex1.awk	awk14_ex1.awk

>>	[-e	Gnu_Awk__Part_14/hpr2816/awk14_ex2.awk]	&&	ln	-s	-f	

Gnu_Awk__Part_14/hpr2816/awk14_ex2.awk	awk14_ex2.awk

>>	[-e	Gnu_Awk__Part_14/hpr2816/awk14_ex3.awk]	&&	ln	-s	-f	

Gnu_Awk__Part_14/hpr2816/awk14_ex3.awk	awk14_ex3.awk

This	is	a	script	which	I	can	use	in	all	sorts	of	other	contexts,	though	it	probably
needs	some	refinement	to	be	completely	foolproof.

Note	that	some	caution	is	needed	when	writing	shell	commands	in	awk	because
of	 the	 potential	 pitfalls	 when	 using	 quotes.	 See	 the	 GNU	 Awk	 User’s	 Guide
section	10.2.9	for	hints.

Redirecting	to	a	coprocess

This	type	of	redirection	uses	a	pipe	symbol	and	an	ampersand	to	send	output	to	a
string	containing	a	command	(or	commands)	for	the	shell.

print	items	|&	command

printf	format,	items	|&	command

This	 is	 an	 advanced	 feature	 which	 is	 a	 gawk	 extension.	 Unlike	 the	 previous
redirection,	which	sends	to	a	program,	this	form	sends	to	a	program	and	allows
the	program’s	output	to	be	read	back.	That	is	why	the	command	is	referred	to	as
a	coprocess.

Since	it	is	necessary	to	use	our	next	main	topic	'getline'	to	achieve	all	of	this
we’ll	postpone	discussing	the	subject	until	the	next	episode.

https://www.gnu.org/software/gawk/manual/gawk.html#Shell-Quoting

Redirecting	to	special	files

There	 are	 three	 standard	 Unix	 channels	 that	 are	 known	 as	 standard	 input,
standard	output,	and	standard	error	output	(or	more	commonly	standard	error).
These	are	connected	to	keyboard	and	screen	in	the	default	case.

Normally	 a	 Unix	 program	 or	 script	 reads	 from	 standard	 input	 and	 writes	 to
standard	output	and	generates	any	error	messages	on	standard	error.	There	is	a
lot	more	to	this	than	described	here	but	this	will	suffice	for	the	moment.

Gnu	Awk	can	use	three	special	file	names	to	access	these	channels:

/dev/stdin:	standard	input
/dev/stdout:	standard	output
/dev/stderr:	standard	error	output

So,	for	example,	a	script	can	write	explicitly	to	standard	error	with	a	command
of	the	form:

print	"Invalid	number"	>	"/dev/stderr"

See	 the	GNU	Awk	User’s	 Guide	 section	 5.7	 on	 this	 subject	 for	 more	 details.
There	are	also	other	special	names	available	as	described	in	the	Guide	in	section
5.8.

Next	episode

I	will	be	continuing	with	the	second	half	of	this	episode	in	a	few	weeks.

Links

GNU	Awk	User’s	Guide
Redirecting	output	of	print	and	printf
Special	Files	for	Standard	Preopened	Data	Streams
Special	File	names	in	gawk

Previous	shows	in	this	series	on	HPR:
“Gnu	Awk	-	Part	1”	-	episode	2114
“Gnu	Awk	-	Part	2”	-	episode	2129

https://www.gnu.org/software/gawk/manual/gawk.html#Special-FD
https://www.gnu.org/software/gawk/manual/gawk.html#Special-Files
https://www.gnu.org/software/gawk/manual/html_node/index.html
https://www.gnu.org/software/gawk/manual/gawk.html#Redirection
https://www.gnu.org/software/gawk/manual/gawk.html#Special-FD
https://www.gnu.org/software/gawk/manual/gawk.html#Special-Files
http://hackerpublicradio.org/eps.php?id=2114
http://hackerpublicradio.org/eps.php?id=2129

“Gnu	Awk	-	Part	3”	-	episode	2143
“Gnu	Awk	-	Part	4”	-	episode	2163
“Gnu	Awk	-	Part	5”	-	episode	2184
“Gnu	Awk	-	Part	6”	-	episode	2238
“Gnu	Awk	-	Part	7”	-	episode	2330
“Gnu	Awk	-	Part	8”	-	episode	2438
“Gnu	Awk	-	Part	9”	-	episode	2476
“Gnu	Awk	-	Part	10”	-	episode	2526
“Gnu	Awk	-	Part	11”	-	episode	2554
“Gnu	Awk	-	Part	12”	-	episode	2610
“Gnu	Awk	-	Part	13”	-	episode	2804

Resources:
ePub	version	of	these	notes
Examples:	 awk14_fruit_data.txt,	 awk14_ex1.awk,	 awk14_ex2.awk,
awk14_ex3.awk

http://hackerpublicradio.org/eps.php?id=2143
http://hackerpublicradio.org/eps.php?id=2163
http://hackerpublicradio.org/eps.php?id=2184
http://hackerpublicradio.org/eps.php?id=2238
http://hackerpublicradio.org/eps.php?id=2330
http://hackerpublicradio.org/eps.php?id=2438
http://hackerpublicradio.org/eps.php?id=2476
http://hackerpublicradio.org/eps.php?id=2526
http://hackerpublicradio.org/eps.php?id=2554
http://hackerpublicradio.org/eps.php?id=2610
http://hackerpublicradio.org/eps.php?id=2804
http://hackerpublicradio.org/eps/hpr2816/full_shownotes.epub
http://hackerpublicradio.org/eps/hpr2816/awk14_fruit_data.txt
http://hackerpublicradio.org/eps/hpr2816/awk14_ex1.awk
http://hackerpublicradio.org/eps/hpr2816/awk14_ex2.awk
http://hackerpublicradio.org/eps/hpr2816/awk14_ex3.awk

	Gnu Awk - Part 14 (HPR Show 2816)
	Introduction
	Redirection of output
	Redirecting to a file
	Redirecting and appending to an existing file
	Redirecting to another program
	Redirecting to a coprocess
	Redirecting to special files

	Next episode
	Links

